REPORT DOCUMENTATION PAGE 2. REPORT DATE FINAL grant report 1. REPORT DATE (DD-MM-YYYY) 15-10-2002 An Innovative Coastal-Ocean Observing Network (ICON) 4. TITLE AND SUBTITLE Form Approved OMB No. 0704-0188 3. DATES COVERED (From - To) 18-08-1998 to 31-01-2002 5a. CONTRACT NUMBER Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. | | | | | 5b. GRANT NUMBER N00014-98-1-0870 | | | |--|---|--|---|---|--|--| | | | | | 5c. PROGRAM ELEMENT NUMBER | | | | 6. AUTHOR(S) | Fernandez, Daniel M.;
Paduan, Jeffrey D.; Chavez, F | F.; Kindle, John C.; | | 5d. PROJECT NUMBER | | | | | Shulman, Igor; Vesecky, Joh
Maffione, Robert; Barrick, Do | | | 5e. TASK NUMBER | | | | | | | | 5f. WORK UNIT NUMBER | | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) California State University, Monterey Bay 100 Campus Center Seaside, CA 93955 | | | | 8. PERFORMING ORGANIZATION REPORT NUMBER F9910040 | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Foundation of California State University, Monterey Bay 100 Campus Center, Bldg. 86C Seaside, CA 93955 | | | | 10. SPONSOR/MONITOR'S ACRONYM(S) CSUMB/FCSUMB 11. SPONSORING/MONITORING | | | | 12. DISTRIBUTI
No resitr | | proved for Public | Release | | | | | 13. SUPPLEME | | Distribution Unli | mited | — 20021023 077 | | | | by the National technologies, a network include alinity, and bio and color from region. The materiations are slevel of variable and observed | al Ocean Partnership Program and to integrate them within a de 1) surface current maps froi roptical properties plus surface a satellites, and 4) along-track to del performance is quite goo successfully tracked by the PW clity. For the alongshore currer currents. | (NOPP). Its goal is to bring data assimilating coasta method should be shoul | ng together mo
il ocean circula
uency (HF) rad
ties from seve
ature variance
s, which is a val
At higher freq | nment, academic, and industrial entities funded andern measurement technologies, to develop new ation model. The major components of the observing dar installations, 2) subsurface currents, temperature, seral deep-ocean moorings, 3) sea surface temperature es from two acoustic tomography slices through the elidation of the one-way nesting because these quencies, the model does not reproduce the observed similation resulted in greater correlation between modeled | | | | | ERMS ata assimilation bastal ocean circulation | ocean modeling
high-frequency ra | | ceanographic data collection
bio-optical sesnors acoustic tomography | | | | | CLASSIFICATION OF: b. ABSTRACT c. THIS PAGE | 17. LIMITATION OF ABSTRACT | 18. NUMBER
OF PAGES | | | | | υU | υυ υυ | UU | 7 pages
follow | 19b. TELEPONE NUMBER (<i>Include area code</i>)
(831) 582-3786//(831) 582-3089 | | | | | | | I | Standard Form 208 (Pay 8-0) | | | #### Grant: N00014-98-1-0870 # Grantee: Foundation of California State University, Monterey Bay Title: "An Innovative Coastal-Ocean Observing Network (ICON)" (The Naval Postgraduate School was also a grantee under this grant and also submitted a similar report) Jeffrey D. Paduan Steven R. Ramp, Leslie K. Rosenfeld, Curtis A. Collins, Ching-Sang Chiu, Newell Garfield Department of Oceanography, Code OC/Pd, Naval Postgraduate School Monterey, CA 93943 phone: (831) 656-3350; fax: (831) 656-2712; email: paduan@nps.navy.mil Daniel M. Fernandez Institute of Earth Systems Science & Policy, California State University Monterey Bay Seaside, CA 93955 phone: (831) 582-3786; fax: 582-4688; email: daniel fernandez@csumb.edu Francisco P. Chavez Monterey Bay Aquarium Research Institute 7700 Sandholdt Road Moss Landing, CA 95039 phone: (831) 775-1709; fax: (831) 775-1620; email: chfr@mbari.org Igor Shulman Institute of Marine Sciences, University of Southern Mississippi Stennis Space Center, MS 39529 phone: (228) 688-3403; fax: (228) 688-7072; email: shulman@coam.usm.edu John F. Vesecky Atmospheric, Oceanic, & Space Sciences, University of Michigan Ann Arbor, MI 48109 phone: (734) 764-5151; fax: (734) 764-5137; email: jfv@engin.umich.edu John C. Kindle Oceanography Division, Naval Research Laboratory Stennis Space Center, MS 39529 phone: (228) 688-4118; fax: (228) 688-4759; email: kindle@nrlssc.navy.mil Robert Maffione HOBI Labs 56 Penny Lane, Suite 104, Watsonville, CA 95076 (831) 768-0680; fax: (831) 768-0681; email: hobilabs@hobilabs.com Donald Barrick 1000 Freemont Ave, Suite K, Los Altos, CA 94024 phone: (408) 773-8240; fax: (408) 773-0514; email: don@codaros.com ## Document #s: N00014-98WR-30170, N00014-99WR-30118, N0001400WR20160, and N0001498WX30418; Grant # N00014-98-1-0870 http://www.oc.nps.navy.mil/~icon/ #### LONG-TERM GOALS The Innovative Coastal-Ocean Observing Network (ICON) is a partnership of government, academic, and industrial entities funded by the National Ocean Partnership Program (NOPP). Its goal is to bring together modern measurement technologies, to develop new technologies, and to integrate them within a data assimilating coastal ocean circulation model. #### **OBJECTIVES** The objectives of the project are to evaluate the several real-time observing systems as components of future coastal monitoring networks as well as sources for data-assimilating numerical models. #### **APPROACH** The approach taken in this project is to build on existing partnerships and observing systems around the Monterey Bay region by providing coordination, additional instrumentation, and a focus on evaluating the impact of the various measurements on the validation and forcing of a coastal circulation model. The major components of the observing network include 1) surface current maps from shore-based high frequency (HF) radar installations, 2) subsurface currents, temperature, salinity, and bio-optical properties plus surface meteorological properties from several deep-ocean moorings, 3) sea surface temperature and color from satellites, and 4) along-track temperature and temperature variances from two acoustic tomography slices through the region. These data sets each involve real-time data telemetry. They are also being used as either validation or assimilation sources for a nested, primitive equation numerical model designed to track the evolution of mesoscale filaments and eddies. #### WORK COMPLETED Additional HF radar stations were deployed south of Monterey Bay, moored observations were retrieved from five offshore sites, and acoustic travel times were collected from one along-shore and one cross-shore tomography section. The mooring locations, HF radar sites, and a sample HF radar data set are shown in Figure 1. Of particular note are expanded HF radar locations at Granite Canyon and Pt. Sur and the M4 mooring location, which returned exceptionally good oceanographic, atmospheric, and bio-optical data for the entire period of its deployment from August 1999 into September 2000. Shorter-term deployments of the NPS FLUX buoy and of a bottom-mounted ADCP with acoustic telemetry were made in August 2000 in conjunction with the ONR/AOSN field campaign. Also during that campaign, thirteen separate synoptic surveys of sea surface temperature, air temperature, and winds were made from an instrumented aircraft. The numerical model was spun up from 1995 using NOGAPS wind forcing and lateral boundary conditions from the NRL Pacific West Coast (PWC) model, which itself is nested within the NRL 1/4 degree, global layered model. Multiple runs of the ICON model for the period 1999 have been conducted to evaluate the role of wind forcing (NOGAPS vs. COAMPS), the effectiveness of various data assimilation techniques, and the sensitivity to surface heat fluxes. In addition, a triply nested model grid was generated for the Monterey Bay region to be used to investigate specific case studies of upwelling fronts and filaments sampled during the AOSN field campaign. Figure 1. ICON Mooring and radar locations presented with the first five-site HF radar data set collected on 20 January 2000. Note that these single-component, radial currents must still be combined to produce a vector current map in the regions of overlap. #### **RESULTS** The HF radar data in Figure 1 illustrate the results of the expanded HF radar network. Data from the entire network is available beginning January 2000. Analyses to date have, however, utilized surface current maps from the three sites around Monterey Bay. Model results, with and without assimilation of the HF radar-derived currents, have been compared to temperatures, salinities, and velocities at the mooring sites. In addition, a systematic comparison has been initiated to evaluate the surface heat flux parameters output by the high-resolution (9 km) COAMPS atmospheric model against time series measurements from the mooring sites. As an example of the model performance and types of comparisons that have been conducted, Figure 2 shows subsurface temperatures for all of 1999 at the M1 mooring location from observations and from the numerical model. Statistical comparisons of the same data are presented in Table 1 for the base run with NOGAPS wind forcing and no heat flux forcing and for a run in which surface heat fluxes were incorporated through the assimilation of the composite MCSST data. Figure 2. Daily averaged temperatures at the M1 mooring site from observations and from the ICON model forced with NOGAPS winds and regional-scale (PWC) boundary conditions. The model performance is quite good at seasonal time scales, which is a validation of the one-way nesting because these variations are successfully tracked by the PWC regional-scale model. At higher frequencies, the model does not reproduce the observed level of variability. Other problems are visible near the surface where the model mixed layers are too deep in summer and too shallow in winter, which is certainly a reflection of the lack of heat flux forcing. This problem is mitigated to some degree by assimilation of MCSST data at the surface (Table 1). Table 1. Model versus observed temperature statistics (°C) at the M1 mooring site for 1999. | Depth (m) | σ_{obs} | $\sigma_{ m mod}$ | σ _{mod}
with MCSST | RMS
difference | RMS diff.
with MCSST | |-----------|-------------------------|-------------------|--------------------------------|-------------------|-------------------------| | 0 | 1.52 | 1.12 | 1.16 | 1.33 | 1.05 | | 20 | 1.03 | 1.12 | 1.07 | 1.85 | 1.72 | | 60 | 0.81 | 0.83 | 0.83 | 1.59 | 1.58 | | 100 | 0.70 | 0.69 | 0.66 | 1.28 | 1.23 | | 200 | 0.46 | 0.47 | 0.46 | 0.72 | 0.63 | | 300 | 0.30 | 0.35 | 0.35 | 0.38 | 0.35 | Assimilation of velocity data from low-pass-filtered HF radar data has been tested using the machinery of Physical-Space Statistical Analysis System (PSAS) and spatial error covariances based on seasonal statistics from the HF radar data (see Shulman et al., 2000ab). Despite the surface-only nature of the assimilation (no vertical projection was made during the assimilation), divergences in the correction fields imposed by the observed velocity patterns quickly penetrate to the main thermocline. This is illustrated in Figure 3, which gives an example of the model currents at 75m with and without data assimilation. The changes at 75m are significant and, in addition, the limited-area corrections can be seen to have an effect outside the spatial range of the actual data. Figure 3. ICON model results at 75m depth on 15 August 1995 with only (NOGAPS) wind forcing (a) and with the addition of HF radar-derived surface current assimilation (b). The model difference at 75 m depth with and without assimilation (c) and the most recent HF radar-derived surface current map (d) are also shown. Long-term velocity comparisons at the M1 mooring location illustrate the effect of surface velocity data assimilation as a function of depth. Correlations of observed and modeled cross-shore (u) and along-shore (v) velocities are shown in Figure 4 as a function of depth with and without data assimilation. The figure shows largely improved results down to 150m for the dominant along-shore currents when data assimilation is employed. The results are not all good as the correlation with weaker cross-shore currents is reduced in the region of the thermocline with data assimilation. Figure 4. Modeled vs. observed currents at M1 in 1995. #### **IMPACT/APPLICATIONS** The likely impacts of this project include improved real-time communication, processing, and display of coastal ocean data along with improved algorithms for assimilating that data into numerical models. #### **TRANSITIONS** The transition opportunities are related to improved coastal nowcast and forecast systems. #### **RELATED PROJECTS** This project is closely related to other NOPP efforts focusing on data assimilation and coastal ocean modeling. The ONR-sponsored project of Ly and Paduan (N00014-00-WR20098) to observe and model surface waves in Monterey Bay is a direct extension of the ICON efforts. Also, related efforts can be found in the separate modeling program of Shulman (N00014-97-1-0171). ICON is closely linked to the Autonomous Ocean Sampling Network (AOSN) project whose field program, along with a campaign sponsored by the Monterey Bay Aquarium Research Institute called MUSE, was conducted in Monterey Bay in August 2000. #### **PUBLICATIONS** Barrick, D., R. Cheng, N. Garfield, J. Paduan, P. Lilleboe, J. Gartner, and L. Pederson, 2000: Toward bay/harbor circulation model improvement incorporating HF radar data based on SeaSonde deployments on San Francisco Bay. <u>Proceedings, IEEE Oceans-2000</u>, 5 pp. Paduan, J.D., L.K. Rosenfeld, S.R. Ramp, F. Chavez, C.S. Chiu, and C.A. Collins, 1999: Development and maintenance of the ICON observing system in Monterey Bay. <u>Proceedings, Third Conference on Coastal Atmospheric and Oceanic Prediction and Processes</u>, New Orleans, LA, 3-5 November. Shulman, I., C.-R. Wu, J.K. Lewis, J.D. Paduan, L.K. Rosenfeld, S.R. Ramp, M.S. Cook, J.C. Kindle, and D.-S. Ko, 2000a: Development of the high resolution, data assimilating numerical model of the Monterey Bay. In Spaulding, M.L. and H. Lee Butler (Ed.), Estuarine and Coastal Modeling, 980-994. Shulman, I., C.-R. Wu, J.K. Lewis, J.D. Paduan, L.K. Rosenfeld, J.C. Kindle, S.R. Ramp, and C.A. Collins, 2000b: High resolution modeling and data assimilation in the Monterey Bay area. <u>Continental Shelf Research</u>, submitted.